Butun axtardiqlarinizi tapmaq ucun buraya: DAXIL OLUN
  Mp4 Mp3 Axtar Yukle
  Video Axtar Yukle
  Shekil Axtar Yukle
  Informasiya Melumat Axtar
  Hazir Inshalar Toplusu
  AZERI CHAT + Tanishliq
  1-11 Sinif Derslikler Yukle
  Saglamliq Tibbi Melumat
  Whatsapp Plus Yukle(Yeni)

  • Ana səhifə
  • Təsadüfi
  • Yaxınlıqdakılar
  • Daxil ol
  • Nizamlamalar
İndi ianə et Əgər Vikipediya sizin üçün faydalıdırsa, bu gün ianə edin.

Dövri funksiya

  • Məqalə
  • Müzakirə

Təbiətdə və texnikada bəzi proseslər periodik olaraq təkrar olunur. Periodik dəyişən kəmiyyətləri öyrənmək üçün dövri funksiya anlayışından istifadə olunur.

Hər bir "x" ədədi ilə birlikdə "x-T" və "x+T" (T sıfırdan fərqli) ədədləri də "f" funksiyasının təyin oblastına daxildirlərsə və f ( x − T ) = f ( x ) = f ( x + T ) {\displaystyle f(x-T)=f(x)=f(x+T)} {\displaystyle f(x-T)=f(x)=f(x+T)} bərabərliyi ödənirsə, f funksiyasına dövrü T olan "dövri funksiya" deyilir.

0 (sıfır) istənilən funksiyanın dövrüdür. Dövrü "0" olan funksiyalar maraqlı deyil. Ona görə də T-ni sıfırdan fərqli qəbul edilir. Dövri funksiyanın tərifi aşağıdakı teoremlərlə alınır.

Mündəricat

  • 1 Teoremlər
    • 1.1 Teorem 1:
    • 1.2 Teorem 2:
    • 1.3 Teorem 3:
    • 1.4 Teorem 4:

Teoremlər

Teorem 1:

"T" ədədi "f" funksiyasının dövrüdürsə "(-T)" ədədi də "f" funksiyasının dövri olur.

Teorem 2:

"T1" və "T2" ədədləri f funksiyasının dövrüdürsə T1+T2 və T1-T2 ədədləri də f funksiyasının dövrü olur.

Teorem 3:

T ədədi f funksiyasının dövrüdürsə, n istənilən tam ədəd olduqda "nT" ədədi də f funksiyasının dövrüdür. 2-ci və 3-cü teoremlərdən alınır ki, y = f ( x ) {\displaystyle y=f(x)}   funksiyası dövridirsə, onun dövrlərinin sayı sonsuzdur.buradan da dediklərimizi ümumiləşdirsək,f(x)=f(x+T)=f(x+2T)=f(x+3T)=...=f(x+nT)=... alınacaq. deməli bu bərabərlik söylədiyimiz təklifin doğru olduğunu göstərir.

Teorem 4:

y = f ( x ) {\displaystyle y=f(x)}   dövri funksiyadırsa, onun təyin oblastı koordinat başlanğıcına nəzərən simmetrikdir və sonsuz çoxluqdur.

Doğrudan da dövri funksiyanın tərifinə görə T sıfırdan fərqli olduqda istənilən x ədədi ilə birlikdə x − + T {\displaystyle x_{-}^{+}T}   ədədi də D ( f ) {\displaystyle D(f)}  -ə daxil olmalıdır.

Riyaziyyat haqqında olan bu məqalə bu məqalə qaralama halındadır. Məqaləni edərək Vikipediyanı zənginləşdirin.
Mənbə — "https://az.wikipedia.org/w/index.php?title=Dövri_funksiya&oldid=7903575"
Informasiya Melumat Axtar