Nüvə məsaməsieukariotik bir hüceyrənin nüvəsini əhatə edən ikiqat bir membran olan nüvə qabığını əhatə edən nüvə məsaməsi olaraq bilinən böyük bir protein kompleksinin bir hissəsidir. Onurğalı bir hüceyrənin nüvə qabığında təxminən 1000 nüvə məsamə kompleksi var, lakin bu hüceyrənin növünə və həyat dövrünün mərhələsinə bağlıdır. İnsanın nüvə məsamə kompleksi 110 meqaadalton bir quruluşa malikdir. Nüvə məsamə kompleksini təşkil edən zülallara nukleoporinlər deyilir; hər bir nüvə məsamə kompleksi ən azı 456 fərdi protein molekulundan ibarətdir və 34 fərdi nukleoporin zülalından ibarətdir.

Məsamələri olan hüceyrə nüvəsi.

Ölçü və mürəkkəblik

Nüvə məsamələri kompleksləri molekulları nüvə qabığından nəql etməyə imkan verir. Bu nəql, nüvədən sitoplazmaya doğru hərəkət edən RNT və ribosom zülalları(DNT polimeraza və laminlər kimi), karbohidratları, siqnal molekullarını və nüvəyə daxil olan lipidləri ehtiva edir. Nüvə məsamələri kompleksinin saniyədə kompleksdə 1000 translokasiyanı aktiv şəkildə həyata keçirə bilməsi diqqət çəkir. Kiçik molekullar məsamələrdən yayılsa da, daha böyük molekullar xüsusi siqnal ardıcıllığı ilə tanına bilər və sonra nukleoporinlər tərəfindən nüvəyə və ya xaricə yayılır. Son zamanlar, bu nukleoporinlərin, molekulların nüvə məsaməsi üzərindən nəqlini necə tənzimlədiyini anlayan, ardıcıllıqla kodlaşdırılmış spesifik təkamül yolu ilə qorunan xüsusiyyətlərə malik olduqları göstərilmişdir. Nukleoporinin vasitəçilik etdiyi nəqliyyat birbaşa enerji tələb etmir. Həqiqi məsaməni (xarici halqanı) əhatə edən səkkiz protein alt biriminin hər biri məsamə kanalının üzərində danışan formalı bir zülal əmələ gətirir. Onurğalılarda bütün nüvə məsamələri kompleksinin diametri təxminən 120 nanometrdir . Kanalın diametri insanlarda 5.2 nm ilə Xenopus qurbağasında 10.7 nm, dərinliyi isə təxminən 45 nmdir . Tək telli olan m-RNT-nın qalınlığı təxminən 0,5-1 nm-dir .. Bir məməli nüvə məsamə kompleksinin molekulyar çəkisi təxminən 124 meqadaltondur və hər biri birdən çox nüsxəyə malik təxminən 30 fərqli protein komponentindən ibarətdir.

Protein idxalı

Nüvə lokalizasiya siqnalı (NLS) olan hər hansı bir yük, məsamələrdən sürətli və səmərəli şəkildə daşınması üçün nəzərdə tutulmuşdur. Nüvə lokalizasiya siqnalı olan hər hansı bir material nüvəyə daxil ediləcək.

Klassik nüvə lokalizasiya siqnalı zülal idxal sxemi, importin-α-nın nüvə lokalizasiya siqnalı ardıcıllığına ilk bağlanması ilə başlayır və daha sonra importin-β-nın bağlanması üçün körpü rolunu oynayır. Importinβ-importinα-yük kompleksi daha sonra nüvə məsaməsinə yönəldilir və oradan yayılır. Yük, zülallardan istifadə edərək məsamədən keçsə də, məsamədən keçən hərəkət enerjidən asılı deyil.

Protein ixracı

Bəzi molekulların və ya makromolekulyar komplekslərin, nüvədən sitoplazmaya, habelə ribosom alt vahidlərinə və məlumat-RNT -lərinə ixrac edilməsi lazımdır. Beləliklə, idxal mexanizminə bənzər bir ixrac mexanizmi var.

Klassik ixrac sxemində, nüvə ixrac ardıcıllığı olan zülallar, nüvədə bağlayaraq heterotrimerik bir kompleks meydana gətirə bilər . Kompleks daha sonra GTP -nin hidroliz edildiyi və zülalının sərbəst buraxıldığı sitoplazmaya yayıla bilər. Bu proses eyni zamanda enerjidən asılıdır.İxrac leptomisin B tərəfindən dayandırıla bilər.

RNT ixracı

Hər mövcud RNT sinfi üçün nüvə məsamə kompleksi vasitəsilə fərqli ixrac yolları var. RNT ixracı da siqnal vasitəsidir. RNT bağlayan zülallar da olur. Nüvə mRNA ixracı üçün qorunan m-RNT ixrac faktorları lazımdır. . Bununla birlikdə, histonlar kimi xüsusi mesajları daşımaq üçün etibar etməyən m-RNT ixracının alternativ yolları var.Eyni zamanda birləşmədən asılı olan ixracat, sekretor və mitoxondrial transkriptlər üçün bu alternativ m-RNA ixrac yollarından biri arasındakı qarşılıqlı əlaqəni dəstəkləyir.

Məsamələri olan hüceyrə nüvəsi

Nüvə məsamə kompleksi genoma girişi nəzarət etdiyindən, daha çox transkripsiyaya ehtiyac duyulan hüceyrə dövrü mərhələlərində çox sayda olması vacibdir. Məsələn, dövri olaraq təkrarlanan məməlilər və maya hüceyrələri, hüceyrə dövrünün interfaza fazaları arasındakı nüvədəki məsamələrin sayını iki qat artırır və oositlər inkişafın əvvəlində meydana gələn sürətli mitoza hazırlaşmaq üçün çoxlu nüvə məsamə kompleksi yığırlar. İnterfaza hüceyrələri, hüceyrədəki nüvə məsamə kompleksi səviyyəsini sabit saxlamaq üçün nüvə məsamə kompleksi istehsal nisbətini qorumalıdır, çünki bəziləri zədələnə bilər. Bəzi hüceyrələr transkripsiya ehtiyacının artması səbəbindən nüvə məsamə kompleksi sayını artıra bilər.

Montaj nəzəriyyələri

Nüvə məsamə kompleksiləri necə qurulduğuna dair bir neçə nəzəriyyə var . Bir ehtimal, bir protein kompleksi olaraq xromatinə bağlanmasıdır. Daha sonra xromatinin yanındakı cüt membrana daxil edilir. Bu da öz növbəsində bu membranın birləşməsinə səbəb olur. Digərləri nəticədə nüvə məsamə kompleksi yaratmaq üçün bu protein kompleksinin ətrafında bağlanacaqlar. Bu üsul mitozun hər bir mərhələsində mümkündür, çünki membran birləşmə zülal kompleksi daxil edilməzdən əvvəl xromatinin ətrafında ikiqat membran mövcuddur. Nüvə məsamə kompleksilərinin meydana gəlməsi üçün başqa bir model, tək bir protein kompleksi deyil, bir başlanğıc olaraq bir ön qapının meydana gəlməsidir. Bu məsamə, birdən çox komplek birləşdikdə və xromatinə bağlandıqda meydana gəlməlidir. Mitotik montaj zamanı ətrafında ikiqat membran forması olacaq. Nüvə qabığının formalaşmasından əvvəl elektron mikroskopdan istifadə edilməklə xromatində mümkün ön quruluşlar müşahidə edilmişdir . Hüceyrə dövrü ara fazası zamanı, hər bir komponent mövcud nüvə məsamə kompleksi -lər vasitəsilə nəql edilməklə, nüvədə məsamə meydana gəlməlidir.Nüvə məsamə kompleksilərinin qurulması çox sürətli bir prosesdir, lakin quruluşun mərhələlərlə baş verməsi fikrinə səbəb olan müəyyən fərziyyələr var .

İstinadlar

  1. Maul, Gerd G; Deaven, Larry. . Journal of Cell Biology. 73 (3). 1977: 748–760. doi:. PMC . PMID .
  2. Peters R. . Methods in Molecular Biology. 322. 2006. 235–58. doi:. ISBN 978-1-58829-362-6. PMID . 2007-09-28 tarixində arxivləşdirilib. İstifadə tarixi: 2007-04-04.
  3. Winey, Mark; Yarar, Defne; Giddings Jr., Thomas H; Mastronarde, David N. . Molecular Biology of the Cell. 8 (11). 1 November 1997: 2119–2132. doi:. PMC . PMID .
  4. Keminer, Oliver; Peters, Reiner. . Biophysical Journal. 77 (1). July 1999: 217–228. Bibcode:. doi:. PMC . PMID .
  5. Alber, Frank; Dokudovskaya, Svetlana; Veenhoff, Liesbeth M.; Zhang, Wenzhu; Kipper, Julia; Devos, Damien; Suprapto, Adisetyantari; Karni-Schmidt, Orit; Williams, Rosemary; Chait, Brian T.; Rout, Michael P.; Sali, Andrej. . Nature. 450 (7170). 29 November 2007: 683–694. Bibcode:. doi:. PMID .
  6. Marfori M; Mynott A; Ellis JJ; və b. "Molecular basis for specificity of nuclear import and prediction of nuclear localization". . 1813 (9). October 2010: 1562–77. doi:. PMID .
  7. Reed R, Hurt E. "A conserved mRNA export machinery coupled to pre-mRNA splicing". Cell. 108 (4). February 2002: 523–31. doi:. PMID .
  8. Cenik, C; və b. . PLOS Genetics. 7 (4). 2011: e1001366. doi:. PMC . PMID .
  9. Sheehan MA, Mills AD, Sleeman AM, Laskey RA, Blow JJ. . The Journal of Cell Biology. 106 (1). January 1988: 1–12. doi:. PMC . PMID .
  10. Kiseleva E, Rutherford S, Cotter LM, Allen TD, Goldberg MW. . Journal of Cell Science. 114 (Pt 20). October 2001: 3607–18. doi:. PMID . 2019-09-13 tarixində arxivləşdirilib. İstifadə tarixi: 2008-11-04.
  11. Markossian, Sarine; Suresh, Subbulakshmi; Osmani, Aysha H.; Osmani, Stephen A. . Molecular Biology of the Cell. 26 (4). 2015-02-15: 605–621. doi:. ISSN . PMC . PMID .
  12. De Souza, Colin P. C.; Osmani, Aysha H.; Hashmi, Shahr B.; Osmani, Stephen A. "Partial Nuclear Pore Complex Disassembly during Closed Mitosis in Aspergillus nidulans". Current Biology. 14 (22). 2004: 1973–1984. doi:. ISSN . PMID .
  13. Souza, Colin P. C. De; Osmani, Stephen A. . Eukaryotic Cell. 6 (9). 2007-09-01: 1521–1527. doi:. ISSN . PMC . PMID .
Mənbə — ""

Informasiya Melumat Axtar

Anarim.Az

Sayt Rehberliyi ile Elaqe

Saytdan Istifade Qaydalari

Anarim.Az 2004-2023