Tutaq ki, , ədədi funksiya verilmişdir. Onda hər bir ədədinə yeganə ədədi uyğundur. Funksiyanın verilən qiymətinə görə arqumentin uyğun qiymətinin tapılmasına, daha doğrusu
,
tənliyinin -ə nəzərən həllinə tez-tez rast gəlinir. Həmin tənliyin bir yox, bir neçə və hətta sonsuz sayda həlli ola
bilər. funksiyasının qrafiki ilə düz xəttinin kəsişdiyi bütün nöqtələrin absisləri tənliyinin
Əgər funksiyası hər bir qiymətini ancaq yeganə bir qiymətində alırsa, onda o
funksiya dönən adlanır. Belə funksiyalar üçün
tənliyini istənilən qiymətində x-ə nəzərən birqiymətli həll etmək olar, daha doğrusu hər bir
qiymətinə yeganə qiyməti uyğundur. Bu uyğunluq funksiya təyin edir, özü də funksiyasının tərsi
adlanır və simvolu ilə işarə olunur.
Qeyd edək ki, hər bir
üçün düz xətti dönən funksiyasının qrafikini yeganə
nöqtəsində kəsir, burada .
Tərs funksiyanın arqumentini hərfi ilə, onun qiymətini isə – hərfi ilə işarə edərək, funksiyasının
tərs funksiyasını
,
şəklində yazırlar. Sadəlik üçün simvolu əvəzinə hərfindən istifadə edəcəyik.
Verilən funksiya ilə onun tərsinin əlaqəsini göstərən aşağıdakı xassələri qeyd edək:
1. Əgər funksiyası -in tərs funksiyasıdırsa, onda -də -nin tərs funksiyasıdır; əlavə olaraq
,
daha doğrusu funksiyasının təyin oblası funksiyasının qiymətlər çoxluğu ilə üst-üstə düşür və tərsinə;
2. İstənilən üçün
,
bərabərliyi doğrudur, istənilən üçün isə
,
bərabərliyi doğrudur;
3. funksiyasının qrafiki funksiyasının qrafikinə düz xəttinə nəzərən simmetrikdir;
4. Əgər tək funksiya dönəndirsə, onda onun tərsi də eyni zamanda tək funksiyadır;
5. Əgər ciddi artan (ciddi azalan) funksiyadırsa, onda o dönəndir, eyni zamanda onun tərsi ciddi
artan (ciddi azalan) funksiyadır.
Birinci iki xassə tərs funksiyanın bilavasitə tərifindən, dördüncü və beşinci xassələr isə tərs funksiyanın
və uyğun olaraq tək və ciddi monoton funksiyaların təriflərindən alınır.
Bəzi funksiyalar və onların tərsi:
f funksiyası
|
funksiyanın tərsi
|
Qeydlər
|
x+a
|
y-a
|
|
a-x
|
a-y
|
|
mx
|
|
m0
|
|
|
x, y0
|
|
|
x, y0
|
|
|
x və y-ə məhdudiyyət qoyulmur
|
|
|
x, y0 , p0
|
|
y
|
y0
|
|
y
|
y0
|
|
y
|
y0
|
|
y
|
y0 və a0
|