Butun axtardiqlarinizi tapmaq ucun buraya: DAXIL OLUN
  Mp4 Mp3 Axtar Yukle
  Video Axtar Yukle
  Shekil Axtar Yukle
  Informasiya Melumat Axtar
  Hazir Inshalar Toplusu
  AZERI CHAT + Tanishliq
  1-11 Sinif Derslikler Yukle
  Saglamliq Tibbi Melumat
  Whatsapp Plus Yukle(Yeni)

  • Ana səhifə
  • Təsadüfi
  • Yaxınlıqdakılar
  • Daxil ol
  • Nizamlamalar
İndi ianə et Əgər Vikipediya sizin üçün faydalıdırsa, bu gün ianə edin.

Rekurrent düstur

  • Məqalə
  • Müzakirə
Bu məqaləni vikiləşdirmək lazımdır.
Lütfən, məqaləni ümumvikipediya və qaydalarına uyğun şəkildə tərtib edin.

Rekurrent düstur — ( a n ) {\displaystyle (a_{n})} {\displaystyle (a_{n})} ardıcıllığının ( p + 1 ) {\displaystyle (p+1)} {\displaystyle (p+1)}-ci həddindən başlayaraq hər bir həddini əvvəlki hədlər vasitəsilə ifadə edən

a n = f ( a n − 1 , a n − 2 , . . . , a 1 ) , ( n ≥ p + 1 ) {\displaystyle a_{n}=f(a_{n-1},a_{n-2},...,a_{1}),(n\geq p+1)} {\displaystyle a_{n}=f(a_{n-1},a_{n-2},...,a_{1}),(n\geq p+1)}

şəklində düstur ( n ∈ N ) {\displaystyle (n\in N)} {\displaystyle (n\in N)}. Bu düsturun köməyi ilə, ardıcıllığın ilk p həddi verilibsə, onun bütün hədlərini tapmaq olar. Bu üsul çox məsələnin həlli üçün yarayır. Rekkurent düstur nümunə çevrə daxilinə çəkilmiş düzgün çoxbucaqlının tərəfləri ( a n ) {\displaystyle (a_{n})} {\displaystyle (a_{n})} sayını ( n ) {\displaystyle (n)} {\displaystyle (n)} ikiqat artırdıqda onun tərəfinin ( a 2 n ) {\displaystyle (a_{2n})} {\displaystyle (a_{2n})} dəyişməsi düsturudur:

a 2 n = 2 R 2 − 2 R R 2 − a n 2 4 , ( n ∈ N ) {\displaystyle a_{2n}={\sqrt {2R^{2}-2R{\sqrt {R^{2}-{\frac {a_{n}^{2}}{4}}}}}},(n\in N)} {\displaystyle a_{2n}={\sqrt {2R^{2}-2R{\sqrt {R^{2}-{\frac {a_{n}^{2}}{4}}}}}},(n\in N)}

Burada R {\displaystyle R} {\displaystyle R} xaricə çəkilmiş çevrənin radiusudur. Əgər çevrənin daxilinə çəkilmiş düzgün çoxbucaqlının a n {\displaystyle a_{n}} {\displaystyle a_{n}} tərəfi verilibsə, bu düsturun köməyi ilə həmin çevrənin daxilinə çəkilmiş və tərəflərinin sayı ikiqat çox olan düzgün çoxbucaqlının a 2 n {\displaystyle a_{2n}} {\displaystyle a_{2n}} tərəfini tapmaq olar.

Rekurrentlik latın dilində "geriyə qaçıram", "qayıdıram" deməkdir. Onda "rekurrent düstur" "qayıtma düsturu" deməkdir. Bu termini riyaziyyata ingilis riyaziyyatçı Abraham de Muavr daxil etmişdir.

Ədəbiyyat

  • M. Mərdanov, S. Mirzəyev, Ş. Sadıqov Məktəblinin riyaziyyatdan izahlı lüğəti. Bakı 2016, "Radius nəşriyyatı", 296 səh.
  • Azərbaycan Sovet Ensklopediyası. I–X cild, Bakı 1976–1987.
Mənbə — "https://az.wikipedia.org/w/index.php?title=Rekurrent_düstur&oldid=7993242"
Informasiya Melumat Axtar