Butun axtardiqlarinizi tapmaq ucun buraya: DAXIL OLUN
  Mp4 Mp3 Axtar Yukle
  Video Axtar Yukle
  Shekil Axtar Yukle
  Informasiya Melumat Axtar
  Hazir Inshalar Toplusu
  AZERI CHAT + Tanishliq
  1-11 Sinif Derslikler Yukle
  Saglamliq Tibbi Melumat
  Whatsapp Plus Yukle(Yeni)

  • Ana səhifə
  • Təsadüfi
  • Yaxınlıqdakılar
  • Daxil ol
  • Nizamlamalar
İndi ianə et Əgər Vikipediya sizin üçün faydalıdırsa, bu gün ianə edin.

Qrup nəzəriyyəsi

  • Məqalə
  • Müzakirə
Bu məqaləni vikiləşdirmək lazımdır.
Lütfən, məqaləni ümumvikipediya və qaydalarına uyğun şəkildə tərtib edin.

Qrup nəzəriyyəsi — G çoxluğunda elə müəyyən əməl mövcuddursa ki, həmin coxluğun ixtiyari iki ünsürünə (elementinə) üçüncü elementi qarşı qoysun və həmin əmələ nəzərən aşağıdakı 4 aksiom:

  • 1. Qapalılıq: əgər a ve b, G çoxluğuna daxildirsə, onda a*b=c də G qrupuna daxildir.
  • 2. Assosiativlik: G çoxluğunun ixtiyari a, b, c ünsürləri (elementləri) üçün (ab)c=a(bc)
  • 3. G çoxluğunda vahid element adlanan elə e ünsürü (elementi) mövcuddur ki, e*a=a.
  • 4. G çoxluğunda tərs element adlanan həmin çoxluğun ixtiyari a ünsürü (elementi) üçün (-a) elementi mövcuddur ki, (-a) (a)=e.

ödənərsə, onda G çoxluğu qrup adlanır.

Əgər G qrupunun hər hansı H kompleksi qrup əmələ gətirərsə, onda o G qrupunun altqrupu adlanir.

Məsələn, Tam ədədlər çoxluğu toplama əməlinə görə qrup əmələ gətirir. Həmçinin cüt ədədlər çoxluğu da toplamaya nəzərən qrup əmələ gətirdiyindən cut ədədlər tam ədədlərin altqrupunu təşkil edir.

Qrupun kompleksi onun elementlərindən düzəldilmiş ixtiyari çoxluqdur.

Əgər G çoxluğunda onun ixtiyari iki a və b elementinə qarshi həmin çoxluğun hər hansi c elementini qarshi qoyan əməl movcuddursa və bu əmələ nəzərən assosiativlik odənərsə onda G coxlugu yarımqrup adlanır.

Əgər yarımqrup özünde vahid element saxlayarsa belə yarımqrup monoid adlanır.

Özünde vahid element saxlayan yarımqrup monoid adlanır.

Aydındır ki, çoxluq kimi monoid yarımqrupun alt çoxluğudur

  • Qrup anlayışı
  • Altqrup
  • Yarımqrup
  • Monoid
  • Sonlu və dövri qruplar
  • Qrupun və onun elementlərinin tərtibi
  • Normal bolen, İnvariant altqrup
  • Faktorqrup

  • Brian C. Hall: An Elementary Introduction to Groups and Representations
  • Boris Kolev: Lie Groups and mechanics: an introduction
Mənbə — "https://az.wikipedia.org/w/index.php?title=Qrup_nəzəriyyəsi&oldid=8006737"
Informasiya Melumat Axtar