Butun axtardiqlarinizi tapmaq ucun buraya: DAXIL OLUN
  Mp4 Mp3 Axtar Yukle
  Video Axtar Yukle
  Shekil Axtar Yukle
  Informasiya Melumat Axtar
  Hazir Inshalar Toplusu
  AZERI CHAT + Tanishliq
  1-11 Sinif Derslikler Yukle
  Saglamliq Tibbi Melumat
  Whatsapp Plus Yukle(Yeni)

  • Ana səhifə
  • Təsadüfi
  • Yaxınlıqdakılar
  • Daxil ol
  • Nizamlamalar
İndi ianə et Əgər Vikipediya sizin üçün faydalıdırsa, bu gün ianə edin.

Qauss inteqralı

  • Məqalə
  • Müzakirə

Eyler-Poasson inteqralı olaraq da bilinən Qauss inteqralı – Qauss funksiyasının, f ( x ) = e − x 2 {\displaystyle f(x)=e^{-x^{2}}} {\displaystyle f(x)=e^{-x^{2}}}-nin, bütün həqiqi ədədlər xətti üzrə inteqrallanması ilə alınlır. Alman riyaziyyatçısı Karl Fridrix Qaussun adını daşıyan inteqral bu şəkildə yazılır:

f ( x ) = e − x 2 {\displaystyle f(x)=e^{-x^{2}}} {\displaystyle f(x)=e^{-x^{2}}} funksiyasının qrafiki ilə x {\displaystyle x} {\displaystyle x} oxu arasındaki sahə, hansı ki, π {\displaystyle {\sqrt {\pi }}} {\displaystyle {\sqrt {\pi }}}-ə bərabərdir.
∫ − ∞ ∞ e − x 2 d x = π . {\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}}\,dx={\sqrt {\pi }}.} {\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}}\,dx={\sqrt {\pi }}.}

İnteqral geniş bir tətbiq sahəsinə malikdir. Məsələn, dəyişənlərin cüzi dəyişdirilməsi ilə normal paylanmanın normallaşdırma sabitliyini hesablamaq üçün istifadə olunur. Kvant mexanikasında bu inteqral harmonik osilatorun əsas vəziyyətinin ehtimal sıxlığını tapmaq üçün istifadə olunur. Qauss inteqralı analitik şəkildə çoxdəyişkənli kalkulus metodları vasitəsilə həll edilə bilər. Qeyri-müəyyən Qauss inteqralı, ∫ e − x 2 d x {\displaystyle \int e^{-x^{2}}\,dx} {\displaystyle \int e^{-x^{2}}\,dx}, üçün elementar ibtidai funksiyalar ilə göstərilə bilmir, ancaq müəyyən Qauss inteqralının, ∫ − ∞ ∞ e − x 2 d x {\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}}\,dx} {\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}}\,dx}, qiyməti hesablana bilir. İxtiyari Qauss funksiyasının müəyyən inteqralının qiyməti bu şəkildədir: ∫ − ∞ ∞ e − a ( x + b ) 2 d x = π a . {\displaystyle \int _{-\infty }^{\infty }e^{-a(x+b)^{2}}\,dx={\sqrt {\frac {\pi }{a}}}.} {\displaystyle \int _{-\infty }^{\infty }e^{-a(x+b)^{2}}\,dx={\sqrt {\frac {\pi }{a}}}.}

Hesablanışı

Qütb koordinatları vasitəsilə

Qauss inteqralını hesablamaq üçün aşağıdakı xüsusiyyətlərdən istifadə etmək olar:

( ∫ − ∞ ∞ e − x 2 d x ) 2 = ∫ − ∞ ∞ e − x 2 d x ∫ − ∞ ∞ e − y 2 d y = ∫ − ∞ ∞ ∫ − ∞ ∞ e − ( x 2 + y 2 ) d x d y . {\displaystyle \left(\int _{-\infty }^{\infty }e^{-x^{2}}\,dx\right)^{2}=\int _{-\infty }^{\infty }e^{-x^{2}}\,dx\int _{-\infty }^{\infty }e^{-y^{2}}\,dy=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }e^{-(x^{2}+y^{2})}\,dx\,dy.}  

Dekart koordinatlarından qütb koordinatlarına keçid etməklə:

x = r cos ⁡ θ {\displaystyle x=r\cos \theta }  , y = r sin ⁡ θ {\displaystyle y=r\sin \theta }   və d x d y = r d r d θ {\displaystyle dx\,dy=\,r\,dr\,d\theta }   olduğundan, aşağıdakı şəkildə hesablama aparıla bilər: (burada r faktoru qütb koordinatlarına çevrilmə aparıldığından Yakopi determinantının qiymətidir.)

∬ R 2 e − ( x 2 + y 2 ) d x d y = ∫ 0 2 π ∫ 0 ∞ e − r 2 r d r d θ = 2 π ∫ 0 ∞ r e − r 2 d r = 2 π ∫ − ∞ 0 1 2 e s d s s = − r 2 = π ∫ − ∞ 0 e s d s = π ( e 0 − e − ∞ ) = π , {\displaystyle {\begin{aligned}\iint _{\mathbf {R} ^{2}}e^{-(x^{2}+y^{2})}dx\,dy&=\int _{0}^{2\pi }\int _{0}^{\infty }e^{-r^{2}}r\,dr\,d\theta \\[6pt]&=2\pi \int _{0}^{\infty }re^{-r^{2}}\,dr\\[6pt]&=2\pi \int _{-\infty }^{0}{\tfrac {1}{2}}e^{s}\,ds&&s=-r^{2}\\[6pt]&=\pi \int _{-\infty }^{0}e^{s}\,ds\\[6pt]&=\pi (e^{0}-e^{-\infty })\\[6pt]&=\pi ,\end{aligned}}}  

Yerinə yazmaqla alınir:

( ∫ − ∞ ∞ e − x 2 d x ) 2 = π , {\displaystyle \left(\int _{-\infty }^{\infty }e^{-x^{2}}\,dx\right)^{2}=\pi ,}  

Belə ki:

∫ − ∞ ∞ e − x 2 d x = π {\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}}\,dx={\sqrt {\pi }}}  .

Həmçinin bax

  • Normal paylanma
  • Qauss funksiyalarının inteqrallarının siyahısı
Mənbə — "https://az.wikipedia.org/w/index.php?title=Qauss_inteqralı&oldid=8011435"
Informasiya Melumat Axtar