Hörner sxemi (və ya Hörner üsulu) qismət çoxhədlisinin tapılması alqoritmi. Qalıqlı bölmənin tərifinə görə n dərəcəli
çoxhədlisini, x-α ikihədlisinə böldükdə qismət çoxhədlisi n-1 dərəcəli çoxhədli qalıq isə ədəd olur.
qismət çoxhədlisinin əmsallarını və qalığı Hörner sxemi adlanan xüsusi üsulun köməyi ilə asan tapmaq olur.
İzahı
Tərifə görə
bərabərliyinin sağ tərəfində mötərizələri açıb, onu x-in dərəcələrinə görə düzsək, iki çoxhədli bərabərlik şərtinə əsasən yaza bilərik ki,
Buradan, qismət əmsallarını və r qalığını
şəklində taparıq.
Göründüyü kimi bölünən çoxhədlinin əmsalları və α məlum olduqda qismət çoxhədlisinin əmsallarını və r-ə qiymətlər verməklə asanlıqla (2) düsturlarından təyin etmək olar.
Qismət çoxhədlisinin bu üsulla tapılmasına Hörner sxemi deyilir və adətən, bu sxem cədvəl şəklində verilir. Bu cədvəlin birinci sətrində P(x)-in əmsalları, ikinci sətrində isə ardıcıl olaraq, bölmənin sərbəst həddi Q(x)-in əmsalları və qalıq yazılır.
an
an-1
...
a1
a0
α
bn-1=a
bn-2=αbn-1+an-1
b0=αb1+a1
r=αb0+a0
Nümunə:
çoxhədlisini x+2 ikihədlisinə bölək. Bunun üçün Hörner sxemini tətbiq edək.
1
0
-2
0
4
-7
-2
1
-2
2
-4
12
-31
Deməli, , R=-31.
Mənbə
Cəbr və analizin başlanğıcı - Ümumtəhsil məktəblərinin XI sinfi üçün dərslik; M.C.Mərdanov, M.H.Yaqubov, S.S.Mirzəyev, A.B.İbrahimov, İ.H.Hüseynov, M.A.Kərimov, Ə.F.Quliyev; Çaşıoğlu nəş. 2007-ci il.