Butun axtardiqlarinizi tapmaq ucun buraya: DAXIL OLUN
  Mp4 Mp3 Axtar Yukle
  Video Axtar Yukle
  Shekil Axtar Yukle
  Informasiya Melumat Axtar
  Hazir Inshalar Toplusu
  AZERI CHAT + Tanishliq
  1-11 Sinif Derslikler Yukle
  Saglamliq Tibbi Melumat
  Whatsapp Plus Yukle(Yeni)

  • Ana səhifə
  • Təsadüfi
  • Yaxınlıqdakılar
  • Daxil ol
  • Nizamlamalar
İndi ianə et Əgər Vikipediya sizin üçün faydalıdırsa, bu gün ianə edin.

Düzbucaqlı üçbucaq

  • Məqalə
  • Müzakirə

Düzbucaqlı üçbucaq—bucaqlarından biri düz bucaq (90⁰) olan üçbucağa deyilir[1].

Düzbucaqlı üçbucaq

Düzbucaqlı üçbucaqda düz bucaq qarşısındakı tərəf hipotenuz, ona bitişik tərəflər, yəni iti bucaqlar qarşısında duran tərəflər isə katetlər adlanır.

Pifaqor teoreminə görə düzbucaqlı üçbucaqda katetlərin kvadratları cəmi hipotenuzun kvadratına bərabərdir. a 2 + b 2 = c 2 {\displaystyle a^{2}+b^{2}=c^{2}} {\displaystyle a^{2}+b^{2}=c^{2}}

Katetləri bərabər olan düzbucaqlı üçbucaq bərabəryanlı düzbucaqlı üçbucaq adlanır.

Mündəricat

  • 1 Xüsusiyyətləri
  • 2 Sahəsi
  • 3 Triqonometrik nisbətlər
  • 4 İstinadlar

Xüsusiyyətləri

  • Düzbucaqlı üçbucağın iti bucaqlarının cəmi 90°-yə bərabərdir.
  • Düzbucaqlı üçbucağın xaricinə çəkilmiş çevrənin mərkəzi hipotenuzun orta nöqtəsidir.
  • Bərabəryanlı düzbucaqlı üçbucağın iti bucaqlarının hər biri 45°-yə bərabərdir.
  • Bərabəryanlı düzbucaqlı üçbucaqda hipotenuz katetin kök altında iki mislinə bərabərdir[2].
  • Düzbucaqlı üçbucaqda 30 dərəcəli bucaq qarşısında duran katet hipotenuzun yarısına bərabərdir.
  • Düzbucaqlı üçbucağın xaricinə çəkilmiş çevrənin radiusu hipotenuzun yarısına bərabərdir. R=c/2
  • Düzbucaqlı üçbucağın daxilinə çəkilmiş çevrənin radiusu r=(a+b-c)/2 düsturu ilə hesablanır (burada r-düzbucaqlı üçbucağın daxilinə çəkilmiş çevrənin radiusu, a və b katetlər, c-hipotenuzdur).
  • İti bucaqları 30°-60° olan düzbucaqlı üçbucaqda 60°-li bucaq qarşısındakı katet digər katetden kök altında 3 dəfə böyükdür.
  • Düz bucaqdan hipotenuza çəkilmiş hündürlüyün kvadratı onun hipotenuz üzərində böldüyü parçaların hasilinə bərabərdir.
  • Düz bucaqdan çəkilmiş meridianın uzunluğu ayırdığı hissələrin uzunuluqlarına bərabərdir.

Sahəsi

  1. Düzbucaqlı üçbucağın sahəsi katetlərinin hasilinin yarısına bərabərdir: S=a*b/2
  2. Heron düsturuna görə düzbucaqlı üçbucağın sahəsi kök altında onun yarımperimetri ilə hər bir katetin ayrı-ayrılıqda fərqinin hasilinə bərabərdir[3].
  3. Düzbucaqlı üçbucağın sahəsi onun daxilinə çəkilmiş çevrənin radiusu ilə bu radiusun hipotenuz ilə cəminin hasilinə bərabərdir[3].
  4. Düzbucaqlı üçbucağın sahəsi onun daxilinə çəkilmiş çevrənin hipotenuza toxunma nöqtəsində onu böldüyü hissələrin uzunluqları hasilinə bərabərdir.[3]
  5. Bərabəryanlı düzbucaqlı üçbucağın sahəsi kvadratın sahəsinin yarısına bərabərdir. S=a²/2

Triqonometrik nisbətlər

  • Düzbucaqlı üçbucaqda iti bucağın sinusu bu bucağın qarşısındakı katetin hipotenuza nisbətinə deyilir[4].
  • Düzbucaqlı üçbucaqda iti bucağın kosinusu bu bucağa bitişik katetin hipotenuza nisbətinə deyilir[4].
  • Düzbucaqlı üçbucaqda iti bucağın tangensi bu bucağın qarşısındakı katetin bucağa bitişik katetə nisbətinə deyilir[4]. Buradan alırıq ki:

t g α = s i n α c o s α {\displaystyle tg\alpha ={\frac {sin\alpha }{cos\alpha }}}  

  • Düzbucaqlı üçbucaqda iti bucağın kotangensi bu bucağa bitişik katetin bucağın qarşısındakı katetə nisbətinə deyilir[4]. Buradan alırıq ki:

c t g α = c o s α s i n α {\displaystyle ctg\alpha ={\frac {cos\alpha }{sin\alpha }}}  

İstinadlar

  1. ↑ "Definition" (ingilis). learnalberta.ca. 10 May 2020 tarixində arxivləşdirilib. İstifadə tarixi: 7 may 2021.
  2. ↑ "Special Right Triangles" (ingilis). calculator.net. İstifadə tarixi: }7 may 2021.
  3. ↑ 1 2 3 "Düzbucaqlı üçbucağın sahəsi" (az.). jsoft.ws. 2021-05-17 tarixində arxivləşdirilib. İstifadə tarixi: 2021-04-21.
  4. ↑ 1 2 3 4 "Right Triangle Trigonometry" (eng). math.libretexts.org. Jan 17, 2020. 2023-07-07 tarixində arxivləşdirilib. İstifadə tarixi: 2021-02-04.
Bu məqalə qaralama halındadır. Məqaləni edərək Vikipediyanı zənginləşdirə bilərsiniz.
Bu şablon mümkündürsə, daha dəqiqi ilə əvəz edilməlidir.
Mənbə — "https://az.wikipedia.org/w/index.php?title=Düzbucaqlı_üçbucaq&oldid=8100077"
Informasiya Melumat Axtar