Riyaziyyatda, formasında yazılan adi diferensial tənliyə Bernoulli diferensial tənliyi deyilir.
Burada , 0 və ya 1-dən başqa hər hansı bir real sayıdır. 1695-ci ildə bunu müzakirə edən Yakob Bernulli adını daşıyır. Bernoulli tənlikləri özəl tənliklərdir, çünki məlum dəqiq həlləri olan xətti olmayan diferensial tənliklərdir. Bernoulli tənliyinin məşhur bir özəl hali logistik differensial tənliyidir .
Xətti diferensial tənliyə çevrilmə
olduğu hal üçün diferensial tənlik xəttidir. olarsa ayrıla bilər haldadır. Bu hallarda, bu formaların tənliklərini həll etmək üçün standart üsullar tətbiq edilə bilər. və olduqda yerləşdirilirsə hər hansı bir Bernoulli tənliyini xətti diferensial tənliyə endirilir. Məsələn, də, yerləşdirilirsə, diferensial tənliyindən xətti diferensial tənliyi d əldə edilir.
Həll
Qoy və
xətti diferensial tənliyin bir həlli olsun
Onda bizdə var ki aşağıdakının bir həllidir
Və bütün fərqli diferensial tənliklər üçün, bütün üçün bizdə var ki üçün həllidir.
Nümunə
Bernoulli tənliyini nəzərdən keçirək
(bu vəziyyətdə daha konkret olaraq Riccati tənliyi ). sabit funksiyası bir həlldir. bölünməsiylə
Dəyişən dəyişənlər aşağıdakı tənlikləri verir
inteqrasiya amili istifadə edərək həll edilə bilər
İlə çarparaq ,
Sol tərəf törəməsidir. Hər iki tərəfi 'e görə inteqrasiya etmək aşağıdakılara səbəb olur
üçün həll
- dır.
İstinadlar
- Bernulli, Yakob, "Explicationes, Annotationes & Additiones ad ea, quae in Actis sup. de Curva Elastica, Isochrona Paracentrica, & Velaria, hinc inde memorata, & paratim controversa legundur; ubi de Linea mediarum directionum, alliisque novis", , 1695
- Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard, Solving ordinary differential equations I: Nonstiff problems, Berlin, New York: , 1993, ISBN 978-3-540-56670-0
- Weisstein, Eric W. " 2021-05-07 at the Wayback Machine" From MathWorld--A Wolfram Web Resource. [daha etibarlı mənbə lazımdır]