Vikipediya ?

Üçbucaq

Üçbucaq — Gerçəklik üzərində müstəvinin bir düz xətt üzərində olmayan 3 nöqtəsini (üçbucağın təpələri) cüt-cüt və ardıcıl şəkildə birləşdirən 3 düz xətt parçası (üçbucağın tərəfləri) ilə hüdüdlanmış hissəsinə deyilir.

Üçbucağın təpələri adətən böyük latın hərfləri ilə (A, B, C), uyğun təpədəki bucaqların dərəcə ölçüsü yunan hərfləri (α,β,γ) ilə, uyğun təpənin qarşısındakı tərəfin uzunluğu isə əlyazma latın hərfləri ilə (a, b, c) işarə olunur.

Standart işarələmə

xy=3a olarsa, b=2xy

Mündəricat

Üçbucağın növləri

Üçbucağın növləri
 
İtibucaqlı üçbucaq
 
Korbucaqlı üçbucaq
 
Düzbucaqlı üçbucaq
 
Tərəfləri müxtəlif olan
 
Bərabərtərəfli üçbucaq
  • Bütün bucaqları iti bucaq (90-dərəcədən kiçik) olan üçbucağa deyilir.
  • Bir bucağı düz bucaq (90°-yə bərabər) olan üçbucağa düzbucaqlı üçbucaq deyilir. Ücbucağın yalnız bir bucağı düz bucaq ola bilər.
  • Bir bucağı kor bucaq (90°-dən böyük) olan üçbucağa deyilir. Ücbucağın yalnız bir bucağı kor bucaq ola bilər.
  • İki tərəfi bərabər olan üçbucağa bərabəryanlı üçbucaq deyilir.
  • Tərəflərinin üçü də bərabər olan üçbucağa bərabərtərəfli (yaxud düzgün) üçbucaq deyilir.

Üçbucaqla bağlı parça və çevrələr

Üçbucağın bütün tərəflərinə toxunan çevrəyə onun daxilinə çəkilmiş çevrə deyilir. Üçbucağın daxilinə çəkilmiş çevrə var və yeganədir. Üçbucağın hər üç təpəsindən keçən çevrəyə onun xaricinə çəkilmiş çevrə deyilir. Üçbucağın xaricinə çəkilmiş çevrə var və yeganədir. Üçbucağın verilmiş təpəsini qarşı tərəfin ortası ilə birləşdirən parça üçbucağın medianı adlanır. Üçbucağın hər üç medianı bir nöqtədə kəsişir və kəsişmə nöqtəsində təpədən hesablanmaqla 1:2 nisbətində bölünür. Kəsişmə nöqtəsi üçbucağın ağırlıq mərkəzi adlanır. Üçbucağın təpəsindən qarşı tərəfə, yaxud onun uzantısına çəkilmiş perpendikulyar üçbucağın hündürlüyü adlanır. Ücbucağın üç hündürlüyü bir nöqtədə kəsişir. Üçbucağın verilmiş təpəsini qarşı tərəflə birləşdirən və təpədəki bucağı yarıya bölən parçaya üçbucağın tənböləni deyilir. Üçbucağın tənbölənləri bir nöqtədə kəsişir və həmin nöqtə daxilə çəkilmiş çevrənin mərkəzidir. Üçbucağın iki tərəfinin ortasını birləşdirən parçaya üçbucağın orta xətti deyilir. Bərabəryanlı üçbucaqda oturacağa çəkilmiş hündürlük, median və tənbölən üst-üstə düşür. Bunu tərsi də doğrudur: Əgər tənbölən, hündürlük və median üst-üstə düşərsə, onda üçbucaq bərabəryanlıdır. Tərəfləri müxtəlif olan üçbucağın bir təpəsindən çəkilmiş tənbölən həmin təpədən çəkilmiş median və hündürlük arasında yerləşir. Üçbucağın tərəflərinin orta perpendikulyarları da bir nöqtədə kəsişir və həmin nöqtə xaricə çəkilmiş çevrənin mərkəzi ilə üst-üstə düşür.

Xassələri

  • Üçbucağın daxili bucaqlarının cəmi 180°-dir:  .
  • Üçbucağın xarici bucaqlarının cəmi 360°-dir.
  • Üçbucaqda böyük bucaq qarşısında böyük tərəf, kiçik bucaq qarşısında kiçik tərəf olur.
  • Üçbucağın hər hansı bir tərəfinin uzunluğu digər iki tərəfin uzunluqları cəmindən kiçik , fərqindən böyükdür (bu üçbucaq bərabərsizliyi adlanır):
  
 
  
 
  
 
  • Üçbucağın tənbölənləri bir nöqtədə kəsişir.
  • Üçbucağın medianları bir nöqtədə kəsişir.

Üçbucağın sahəsi

  üçbucağının sahəsi   ilə işarə olunur.

  • 1-ci düstur:
 
  

və ya

 
 

Üçbucağın sahəsi, tərəfinin uzunluğu ilə o tərəfə çəkilmiş olan hündürlüyü hasilinin yarısına bərabərdir.

  • 2-ci düstur (Heron düsturu):
 
  (yarımperimetr)
 
  — Heron düsturu
  • 3-cü düstur

 -də tərəflər   bu tərəflərin qarşısındakı bucaqlar isə uyğun olaraq α, β, γ olarsa,

 1) 
 
 2) 
 
 3) 
 
  • Əgər   üçbucağı tərəfləri   olmaqla bərabərtərəflidirsə, onda
 
 
  • Əgər   üçbucağının daxilinə çəkilmiş çevrənin radiusunu  , xaricinə çəkilmiş çevrənin radiusunu  , perimetrini isə   ilə işarə etsək, onda
 1) 
 
 2) 
 
  • Əgər   üçbucağı düzbucaqlı üçbucaq, katetləri isə    -dirsə, onda
 
 

X(0)=x(0)+v(0x)t+(at^2)/2

Üçbucağın əsas elementlərinin tapılması üçün düsturlar

  üçbucağının tərəflərini    , yarımperimetrini   (  ),   tərəfinə çəkilmiş medianını  , tənbölənini  , hündürlüyünü isə   ilə işarə etsək, onda

 
 
 
 
 
 

   -ni 3-cü düsturda elə yerinə qoymaq lazımdır ki, kökaltı ifadə müsbət olsun.

Ədəbiyyat

  • Riyaziyyat, qəbul imtahanlarına hazırlaşanlar, yuxarı sinif şagirdləri, və müəllimlər üçün dərs vəsaiti, M.H.Yaqubov, İ.M.Abdullayev və b. Bakı-2008.
  • Cəbr-həndəsə düsturları, S.X.Rüstəmov, S.S.Rüstəmov, Z.E.Rüstəmova, Xətai kursları, Bakı-2011.
Mənbə — ""

Informasiya Melumat Axtar

Anarim.Az

Sayt Rehberliyi ile Elaqe

Saytdan Istifade Qaydalari

Anarim.Az 2004-2019